
Journal of Mathematical Chemistry Vol. 34, Nos. 3–4, November 2003 (© 2003)

The scaled Hermite–Weber basis still highly competitive
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The effectiveness of the usual harmonic oscillator basis is demonstrated on a wide class of
Schrödinger Hamiltonians with various spectral properties. More specifically, it is shown nu-
merically that an appropriately scaled Hermite–Weber basis yields extremely accurate results
not only for the energy eigenvalues which differ slighly from the harmonic oscillator levels,
but also for the states which reflect a purely anharmonic character.
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1. Introduction

The one-dimensional Hamiltonians

H = − d2

dx2
+ V (x), x ∈ (−∞,∞) (1)

have been the subject of many computational methods because an investigation of prob-
lems in (1) is a prerequisite for that of the more general and complex models. The
so-called generalized anharmonic oscillators (GAOs) for which

V (x) = x2 + v2kx
2k, v2k > 0, k = 2,3, . . . (2)

are the most studied systems of this kind. The divergence of the perturbation series
expansion over the classical harmonic oscillator solution was first verified explicitly by
Bender and Wu [1]. The aim of this paper is not the review of the anharmonic oscillators,
however, after the important paper by Bender and Wu [1] concerning a quartic perturba-
tion several modified Rayleigh–Schrödinger treatments have been proposed, which are
convergent [2–4].

The harmonic oscillator eigenfunctions are considered as a basis in the Rayleigh–
Ritz variational method as well. One of the first detailed variational calculations are due
to Reid [5] who obtained the first 25 eigenvalues of the pure quartic oscillator, where
V (x) = x4, to 12 significant figures. In fact, it is not surprising that the harmonic os-
cillator basis yields quite satisfactory results for polynomial potentials, especially when
the anharmonic interaction differs a little from the harmonic one.
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Mathematically speaking, the harmonic oscillator is a symmetric single well poten-
tial which corresponds to a singular Sturm–Liouville system with an enumerable infinite
set of discrete spectral points. In this paper, we use exact solutions of such an eigenvalue
problem as a basis in standard variational calculations to test its numerical performance
for symmetric and asymmetric single and double well polynomial potentials, as well as
for certain non-polynomial potentials. Clearly, the Schrödinger operator with a poly-
nomial well potential possesses the same spectral properties as the harmonic oscillator.
However, the non-polynomial Gaussian and Morse potentials considered here have each
a finite number of discrete states together with a continuous spectrum. Therefore, the
present work is also motivated by this fact which makes it possible to understand how
much the discrepancy in the spectral structures of the unperturbed and perturbed systems
affects the accuracy of the computations.

In section 2, very general recursive relationships for the evaluation of the matrix
elements are introduced. Applications to the specific problems with numerical results
are presented in section 3. The discussion of the results and concluding remarks are
given in a final section as usual.

2. Matrix elements

Introducing the linear transformation

ξ = αx, α > 0 (3)

we write down the Schrödinger eigenvalue problem in the form[
T + q(ξ)

]
�(ξ) = E(α)�(ξ), � ∈ L2(−∞,∞) (4)

whereL2 is the Hilbert space of the square integrable functions, andT andq are the
harmonic oscillator Hamiltonian

T = − d2

dξ2
+ ξ2 (5)

and the perturbation potential

q(ξ) = V (ξ/α)

α2
− ξ2, (6)

respectively. The eigenvalues of (4) depending on the optimization parameterα, are
connected with the energy eigenvalues,E say, of the original HamiltonianH in (1) by
the formula

E = α2E(α). (7)

As is well known, the operatorT has purely a discrete spectrum corresponding to a
complete sequence of eigenfunctions

φn(ξ) = Nne
−ξ2/2Hn(ξ), n = 0,1,2, . . . (8)
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which are called the Hermite–Weber functions [6]. The Hermite–Weber functions satisfy
the equationT φn = (2n + 1)φn and become mutually orthonormal over the real line if
the constantsNn are specified by

Nn = 1√
2nn!√π

(9)

for eachn = 0,1,2, . . .. The matrix representation of the eigenvalue problem in (4) is
then found to be

A(α)c = E(α)c (10)

wherec is the column vector which consists of the coordinates of the wave function
�(ξ) with respect to the harmonic basis under consideration. At the numerical side of
this study, we assume a truncated wave function so that the matrixA is a squareN ×N

matrix with the general entry

Amn = (2n+ 1)δmn +Qmn, m, n = 0,1, . . . , N − 1 (11)

in which theQmn, defined by the inner product〈φm(ξ) | q(ξ)φn(ξ)〉, require evaluating
at a number ofN2 integrals of the type

Qmn =
∫ ∞
−∞

q(ξ)φm(ξ)φn(ξ)dξ (12)

whereN is the truncation size andδmn the Kronecker’s delta. Nevertheless, it can be
shown that theQmn obey a recurrence relation. Indeed, we may recall the identity for
the Hermite polynomials [6]

Hn+1(ξ) = 2ξHn(ξ)− 2nHn−1(ξ), H0(ξ) = 1, H−1(ξ) = 0 (13)

to obtain an expression for the product of two Hermite–Weber functions, from which the
functional relationship

Qm+1,n = Nm+1Nn

NmNn+1
Qm,n+1 + 2n

Nm+1Nn

NmNn−1
Qm,n−1 − 2m

Nm+1

Nm−1
Qm−1,n (14)

for each fixedn is derived immediately form = 0,1, . . . , N − 2 with Q−1,n ≡ 0. It is
noteworthy that such a determination of columns of the matrixQ = [Qmn], in turn, is
independent of the particular form of the potential function. To start using the recursions
all that needs to be done is the calculation of the improper integrals

Q0,n =
〈
φ0(ξ)

∣∣ q(ξ)φn(ξ)
〉 = N0Nn

∫ ∞
−∞

e−ξ
2
q(ξ)Hn(ξ)dξ (15)

for n = 0,1, . . . ,2N −2, which is required as an initial condition for (14). Note that the
first N elements of this array are the first row entries of the matrixQ. In other words,
a knowledge of 2N − 1 integrals defined by (15) over a prescribed potential function
suffices to form completely theN × N matrix Q and, hence, the matrixA in (10).
Moreover, the labor involved in such a construction may be considerably shortened by
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exploiting the symmetryQmn = Qnm of the matrix. Note also that we assume potential
functions which are at least sufficiently well behaved for large absolute values of the
argument for the integrals in (15) to exist.

The energy spectrum of the problem can be decomposed into two subsets con-
sisting of even and odd eigenlevels, separately, provided that the original potential has a
reflection symmetryV (x) = V (−x) about the origin. In such a case, the bases{φ2n} and
{φ2n+1} can be employed, respectively, in the expansions of the even and odd wave func-
tions to avoid large matrices. Therefore, the recursions in (14) are revised appropriately
on replacingHn in (8) by H2n andH2n+1, in turn, for the evaluation of the variational
matrix elements representing the Schrödinger equation with a symmetric potential.

3. Applications

3.1. Symmetric potentials

We first consider the GAOs in (2) and the symmetric double well potential
(SDWP)

V (x) = −x2 + v4x
4, v4 > 0 (16a)

which are polynomials in even powers ofx. The SDWP may be taken as

V (x) = v4
(
x2 − 1

2v
−1
4

)2
(16b)

for which the Hamiltonian is positive definite. So the energy levels of (16a) shifted by
the constant term in (16b) are all positive.

Thus, for non-negative integer values ofs, we encounter integrals of the type

Jn(s) =
∫ ∞
−∞

ξ2se−ξ
2
H2n(ξ)dξ, n = 0,1, . . . ,2N − 2 (17)

which are evaluated analytically [7],

Jn(s) = (−4)n√
π

�
(
s + 1

2

)
�
(
n+ 1

2

)
2F1

(−n, s + 1
2; 1

2;1
)
, (18)

to deal with even parity states of these potentials. Here, 2F1(a, b; c; z) stands for the
Gauss hypergeometric function that terminates to give a polynomial of degreen in z as its
first parametera is equal to a non-positive integer−n. Furthermore, such a polynomial
reduces to

2F1(−n, b; c;1) = (c − b)n

(c)n
(19)

at z = 1, on using the Vandermonde’s theorem [6], where(p)n denotes the Pochham-
mer’s symbol. It follows then that

Jn(s) =
√
π

4s−n
(2s)!

(s − n)! (20)
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for n = 0,1, . . . , s and zero, otherwise. Now, from (15), we find the initial conditions

Q0,n = N0N2n
[
α−4

(
1− α4

)
Jn(1)+ α−2kv2kJn(k)

]
(21)

and

Q0,n = N0N2nα
−2
[

1
4v
−1
4 Jn(0)− α−2

(
1+ α4

)
Jn(1)+ α−4v4Jn(2)

]
(22)

for the GAOs and SDWP, respectively, for the recursive determination of the matrix
elements. Note that odd parity states can be treated in a very similar fashion.

As an example of a non-polynomial symmetric potential, we test the Gaussian

V (x) = −e−βx
2
, β > 0 (23)

having a finite number of discrete energy levels, which lie between−1 < E < 0. For
the symmetric states we find that

Q0,n = −N0N2n
[
Jn(1)+ α−2Kn

(
βα−2)] (24)

where the functionKn(t), defined by

Kn(t) =
∫ ∞
−∞

e−(1+t )ξ
2
H2n(ξ)dξ, (25)

results in

Kn(t) = (−4)n�
(
n+ 1

2

)
(1+ t)−1/2

2F1
(−n, 1

2; 1
2; (1+ t)−1) (26)

containing again the ordinary hypergeometric function [7]. By using the known identity

2F1(−n, b; b; z) = (1− z)n, (27)

however, it is expressible as

Kn(t) = (2n)!
n!
√
π (−t)n(1+ t)−n−1/2, (28)

in terms of the elementary functions.
In the numerical tables 1 and 2, we present the ground state eigenvalues of the

quartic and sextic oscillators as a function of the coupling constantsv4 andv6, respec-
tively. Table 3 includes the first 12 nearly degenerate eigenvalues of the SDWP when
v4 = 0.01. Some discrete eigenvalues of the Gaussian potential (GP) are shown in ta-
ble 4 as a function of the parameterβ. Further results, which have not been quoted in
this article, are available from the authors.

3.2. Asymmetric potentials

If we take care of a more general polynomial potential of degree 2M of the form

V (x) =
2M∑
k=2

vkx
k, v2M > 0 (29)
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Table 1
Ground state energies of the quartic oscillatorV (x) = x2+ v4x

4, as a function
of v4.

v4 E0 N αopt

0.0001 1.000 074 986 880 200 111 122 834 155 30 8 1
0.01 1.007 373 672 081 382 460 533 843 905 98 17 1
1 1.392 351 641 530 291 855 657 507 876 62 25 2.1

10 2.499 174 072 118 386 918 268 793 906 19 26 3.1
1000 10.639 788 711 328 046 063 622 042 669 4 30 6.5

10000 22.861 608 870 272 468 891 759 867 963 5 30 9.5
100000 49.225 447 584 229 625 157 076 387 001 1 30 14

Table 2
Ground state energies of the sextic oscillatorV (x) = x2 + v6x

6, as a function
of v6.

v6 E0 N αopt

0.0001 1.000 187 228 153 680 768 286 355 665 62 16 1
0.01 1.016 741 363 754 732 031 671 817 981 52 32 1.8
1 1.435 624 619 003 392 315 761 272 220 54 39 3.2

10 2.205 723 269 595 632 351 009 973 387 17 40 4.2
1000 6.492 350 132 329 671 550 549 557 845 34 40 7

10000 11.478 798 042 264 543 961 289 816 038 6 39 9.5
100000 20.375 098 656 309 660 844 567 287 513 6 41 12.2

Table 3
Nearly degenerate states of the SDWP in (16b) forv4 = 0.01.

n N αopt En

0 54 0.9 1.404 048 605 297 706 882 425 707 570 84
1 54 0.9 1.404 048 605 297 706 882 602 566 280 58
2 55 0.9 4.170 193 605 999 310 127 833 875 071 32
3 56 0.9 4.170 193 605 999 310 219 613 291 198 75
4 57 0.95 6.870 088 833 714 024 612 172 315 168 51
5 57 0.95 6.870 088 833 714 046 802 425 995 681 91
6 60 0.95 9.489 578 387 187 870 055 194 418 356 56
7 57 0.95 9.498 578 387 191 178 212 320 856 961 15
8 60 0.95 12.049 309 486 334 092 592 332 880 171 6
9 59 0.95 12.049 309 486 673 006 847 573 312 477 9

10 60 1 14.514 205 022 981 239 103 429 421 443 9
11 61 1 14.514 205 048 121 017 338 991 612 415 8

we have to evaluate the integrals

Sn(k) =
∫ ∞
−∞

ξ ke−ξ
2
Hn(ξ)dξ, (30)
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Table 4
Eigenvalues of the GPV (x) = −e−βx2

, as a function ofβ.

β αopt N n En

0.001 0.2 30 0 −0.968 752 703 034 398 668 606 599 656 913
35 2 −0.846 820 196 725 803 540 068 942 614 468
45 4 −0.731 125 549 125 734 739 132 375 767 285
55 6 −0.621 888 650 443 182 657 155 148 987 662

0.01 0.3 41 0 −0.903 763 987 980 773 054 539 687 567 952
70 2 −0.550 801 670 798 557 886 254 842 935 82
70 4 −0.267 463 693 629 351 027
70 6 −0.068 692 251

0.1 0.4 70 0 −0.721 530 628 487 107 638 685 036 884
70 2 −0.007 89

which are closely related to those in (17). Actually, we see that

Sn(k) =



0, if n+ k is odd,
Jn/2

(
1
2k
)
, if n andk are both even,

Jn+1/2
(
k + 1

2

)
, if n andk are both odd

(31)

from which

Q0,n = N0Nn

[
2M∑
k=2

α−k−2vkSn(k)− Sn(2)
]

(32)

is calculated immediately. Then we construct, from (14) and (11), the matrixA whose
eigenvalues approximate the spectrum of the asymmetric Hamiltonian in question. Spec-
imen computations are performed for the asymmetric double well potential (ADWP)

V (x) = v2x
2 + v3x

3 + v4x
4 (33)

which has two minima located asymmetrically about the origin, if the parameters satisfy
the inequalitiesv4 > 0 and 9v2

3−32v2v4 > 0. Here, we take into account the alternative
form

V (x) = c1x
2(x + c2)(x − 1), 0 < c2 < 1, c1 > 0 (34)

of the ADWPs proposed by Ta¸seli [11], and give results in table 5 for several values of
c1 andc2.

These potentials are of practical interest for the protonic movement of hydrogen-
bonded systems [8]. Znojil [9] constructed Hill’s determinant of the problem by match-
ing two power series valid for negative and positive values of the argument, respectively.
Some numerical resuls were introduced by Diaz et. al. [10], but a more systematic
numerical study of the ADWPs may be found in [11].

Finally, we revisit an asymmetric, non-polynomial potential

V (x) = (e−γ x − 1
)2
, γ > 0 (35)
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Table 5
Eigenvalues of ADWPs in (34) as functions ofc1 andc2.

c1 c2 αopt N n En

0.001 0.25 1 54 0 0.220 496 933 551 383 181 180 584 101 238
56 1 0.799 076 156 134 041 042 756 335 888 803
57 2 1.579 425 872 715 042 186 839 788 277 34
59 3 2.475 227 126 276 957 997 940 355 211 70

0.50 1 54 0 0.218 255 536 797 065 407 353 982 485 212
55 1 0.793 475 852 449 351 300 718 466 956 320
58 2 1.571 726 799 166 984 751 587 449 207 98
58 3 2.465 596 537 785 138 574 857 695 511 22

0.75 1 55 0 0.215 207 254 047 971 748 843 624 710 389
55 1 1.785 867 870 008 598 255 331 395 933 43
58 2 1.561 286 635 695 375 110 776 021 304 73
58 3 2.452 542 721 464 178 763 806 091 811 26

100 0.25 1.2 66 0 −4.277 344 849 182 474 166 847 348 848 02
67 1 7.080 517 391 364 158 656 090 710 350 27
67 2 19.817 761 502 618 821 399 175 325 525 3
67 3 36.209 337 296 287 706 584 558 242 608 9

0.50 1.2 68 0 −6.816 052 047 536 736 982 561 430 366 00
68 1 4.675 693 930 558 290 057 997 135 848 24
69 2 15.973 204 136 317 836 561 600 922 534 7
67 3 31.505 546 630 519 551 260 800 075 872 1

0.75 1.2 65 0 −9.459 479 212 224 512 858 546 562 584 41
67 1 0.010 560 072 717 619 621 379 801 416 914
67 2 10.866 977 233 476 768 562 653 506 503 6
67 3 24.888 991 175 519 381 797 134 001 071 9

which has a composite spectrum unlike the polynomial oscillators. It is known as the
Morse potential (MP) and is used to model the purely vibrational levels of diatomic
molecules [12]. The number of discretely distributed spectral points of the MP, located
on the energy interval(0,1), depends completely on the parameterγ and has no bound
states at all ifγ > 2 [13]. The MP admits exact analytical solutions on the unphysical
domain ofx, x ∈ (−∞,∞), due to the fact thatx in (35) denotes the internuclear
distance which should not be negative. However, we proved numerically in [14] that
Morse’s original assumption of the inclusion of the unphysical portion(−∞,0) does
not cause a significant deviation from the correct eigenvalues representing the physical
domain.

The numerical results for the MP are shown in table 6. It should be noted that the
matrix elements are determined recursively without any trouble using the values of the
array

Q0,n = N0Nn

{
α−2[et2Rn(t)− 2et

2/4Rn

(
1
2t
)+Rn(0)

]− Sn(2)} (36)
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Table 6
Eigenvalues of the MPV (x) = (e−γ x − 1)2, as a function ofγ .

γ αopt N n En Eexact

0.02 0.1 101 0 0.019 900 000 000 000 000 000 000 000 001 199×10−4

1 0.059 100 000 000 000 000 000 000 000 001 591×10−4

2 0.097 500 000 000 000 000 000 000 000 001 975×10−4

3 0.135 100 000 000 000 000 000 000 000 001 1351×10−4

4 0.171 900 000 000 000 000 000 000 000 001 1719×10−4

0.2 0.4 102 0 0.190 000 000 000 000 000 000 0008 19×10−2

1 0.510 000 000 000 000 005 51×10−2

2 0.750 000 000 005 75×10−2

3 0.910 000 91×10−2

at t = γ /α, where

Rn(t) =
∫ ∞
−∞

e−(ξ+t )
2
Hn(ξ)dξ = √π(−2t)n (37)

with Rn(0) = √πδ0,n.

4. Discussion

In this work, the eigenvalues of one-dimensional quantum problems are computed
accurate to 30 digits in most cases. It is contented with finding lower eigenvalues since
a variational method becomes forbiddingly laborious for higher excited states. Another
very general disadvantage of the method is that each matrix element requires an inte-
gration. Fortunately, we overcome successfully this difficulty deriving nice recursive
relationships.

The accuracy of the results is checked by increasing the truncation sizeN in a
systematic manner. Furthermore, the results are confirmed by several values of the pa-
rameterα, whose optimum values are also included in the numerical tables. It is not
surprising to deduce from tables 1 and 2 that the optimum values increase as the anhar-
monic interactions get stronger.

The optimality of the parameterα may be seen clearly in table 7. As an illustrative
example, we list the matrix sizesN corresponding to different values ofα for the quartic
oscillator with a large anharmonic term. Note that, in table 7, theN denote matrix
sizes at which the desired (fixed) accuracy forE0 is reached. Therefore, as is recorded
in table 1 the optimum value isαopt = 14 for the ground state energy of the potential
V (x) = x2 + 100 000x4.

The spectral properties of the SDWPs in (16) are virtually the same as the quartic
oscillator for large enough values ofv4. However, the lower eigenvalues are closely
bunched in pairs if the two wells are sufficiently separated. This situation corresponds
to weak couplings whenv4 � 1 and implies the tunneling through the potential barrier.
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Table 7
Convergence rate of the ground state of the quartic oscillator
V (x) = x2 + v4x

4, wherev4 = 100 000, as a function ofα.

α 8 10 12 13 14 15 17 20 23
N 69 41 33 31 30 31 37 47 69

In such a case, the determination of the gaps between pseudodegenerate eigenvalues
becomes more important. We infer from table 3 that the scaled Hermite–Weber basis
has the capability of giving those eigenvalues without any loss of accuracy. This may
be regarded as quite an impressive result if we recall the fact that many methods fail for
potentials with degenerate minima [15–18].

The last example of problems with a reflection symmetry is the GP in (23) whose
radial form received more attention in the literature [19–21]. It is known that there exists
a threshold value of the parameterβ, sayβthr, beyond which the particular bound state
being considered can no longer survive. We notice, from table 4, that asβ approaches
βthr a remarkable slowing down of convergence occurs for very weakly bound states,
with E just below zero.

In the case of an asymmetric operator, the matrix sizesN are relatively larger
since there is no characterization of the energy spectrum of being even or odd parity.
Therefore, we include all basis elements in our formulation without any decomposition.
Nevertheless, we achieve the same accuracy as the symmetric cases, as shown from
tables 5 and 6. We observe again, from table 6, that the method fails in computing the
eigenvalues of the MP at the near border of the continuum asE tends toward one.

As a final remark, we could not get success in stating an analytic estimation for
the optimum values ofα. However, we perceive that the experimental optimum values
determined here, for instance, for the quartic oscillator are in good agreements with some
WKB estimates [22]. Furthermore, it seems that it is straightforward to extend such a
scaled basis to two-dimensional Schrödinger equation as well.
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H. Taşeli and M. B. Erseçen / The scaled Hermite–Weber basis 187
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